Radiochemia
Informacje ogólne
Kod przedmiotu: | MFI-BR.R |
Kod Erasmus / ISCED: | (brak danych) / (brak danych) |
Nazwa przedmiotu: | Radiochemia |
Jednostka: | Wydział Matematyki, Fizyki i Informatyki |
Grupy: | |
Punkty ECTS i inne: |
7.00
|
Język prowadzenia: | polski |
Wymagania wstępne: | Znajomość: •pojęć związanych z jądrem atomowym (t. j. masa jądra, energia wiązania jądra), •samorzutnych przemian jądrowych (alfa, beta gamma) - reguła przesunięć Soddy'ego-Fajansa, mechanizmy rozpadów, bilans energetyczny poszczególnych przemian, •efektów oddziaływania promieniowania jądrowego z materią, •zasady działania detektorów promieniowania jonizującego: gazowych, scyntylacyjnych oraz półprzewodnikowych. |
Godzinowe ekwiwalenty punktów ECTS: | Godziny kontaktowe (z udziałem nauczyciela akademickiego) Wykład 30 Laboratorium 30 Konsultacje 30 Łączna liczba godzin z udziałem nauczyciela akademickiego 90 Liczba punktów ECTS z udziałem nauczyciela akademickiego 3 Godziny niekontaktowe (praca własna studenta): Przygotowanie się do laboratorium 30 Opracowania 20 Studiowanie literatury 30 Przygotowanie się do egzaminu 40 Łączna liczba godzin nie kontaktowych 120 Liczba punktów ECTS za godziny nie kontaktowe 4 Sumaryczna liczba punktów ECTS dla modułu 7 |
Sposób weryfikacji efektów kształcenia: | WIEDZA W1 – wykład, egzamin pisemny W2 - wykład, egzamin pisemny W3 - wykład, egzamin pisemny, laboratorium – kolokwia śródsemestralne W4 - laboratorium – kolokwia śródsemestralne i końcowe. UMIEJĘTNOŚCI U1 – wykład, egzamin pisemny U2 – ćwiczenia laboratoryjne U3 – ćwiczenia laboratoryjne U4 – ćwiczenia laboratoryjne KOMPETENCJE SPOŁECZNE K1 – wykład, egzamin pisemny K2 – ćwiczenia laboratoryjne |
Pełny opis: |
Moduł obejmuje wiedzę z zakresu radiochemii, w tym metody otrzymywania i wydzielania izotopów promieniotwórczych, technologię wytwarzania paliwa jądrowego oraz metody detekcji izotopów w środowisku. Zawiera on także zagadnienia związane ze strukturą jądra atomowego, oddziaływaniem promieniowania z materią, budową i zasadą działania liczników promieniowania jonizującego oraz energetyką jądrową. 1. Przedmiot badań radiochemii, działy radiochemii, definicja pierwiastka promieniotwórczego oraz izotopu promieniotwórczego. 2. Jądro atomowe – wyznaczenie ładunku jądra; pojęcie izotopów, izobarów, izotonów, jąder zwierciadlanych i izomerycznych; masa relatywistyczna; energia wiązania jądra; cechy charakterystyczne sił jądrowych. 3. Naturalne pierwiastki promieniotwórcze, szeregi promieniotwórcze. 4. Radon – powstawanie, rozpad, źródła w budynkach, oddziaływanie na organizm ludzki. 5. Reakcje jądrowe – klasyfikacja, przykłady, prawa zachowania w przebiegu reakcji jądrowych. 6. Reakcje termojądrowe, podstawowe reagenty, właściwości plazmy wysokotemperaturowej, kryterium Lawsona, metody pułapkowania plazmy (typy reaktorów termojądrowych). 7. Wymiana izotopowa – klasyfikacja reakcji wymiany, efekty izotopowe, mechanizmy reakcji wymiany, wymiana izotopowa w związkach chemicznych różnych klas, stała równowagi reakcji wymiany, współczynnik i stopień wymiany, kinetyka wymiany jednorodnej (wykładnicze prawo wymiany, czas połowicznej wymiany). 8. Podział mikroilości izotopów pomiędzy dwie fazy – izomorfizm, izodimorfizm, prawa Hahna współstrącania rzeczywistego i adsorpcyjnego. 9. Chemia radiacyjna – rodzaje przemian radiacyjno-chemicznych, radioliza wody (modele Samuela-Magee oraz Graya-Platzmana), radioliza substancji organicznych, autoradioliza, pojęcia: wydajność radiacyjno-chemiczna, szybkość reakcji radiacyjno-chemicznej, LET, współczynnik przenoszenia energii, kerma). 10. Otrzymywanie i wydzielanie izotopów promieniotwórczych – metody otrzymywania i ich charakterystyka, ze szczególnym uwzględnieniem metody Szilarda-Chalmersa, metody wydzielania izotopów promieniotwórczych (ekstrakcja, współstrącanie, adsorpcja, chromatografia, metody elektrochemiczne, ługowanie). 11. Synteza związków znaczonych izotopami promieniotwórczymi – nomenklatura związków znaczonych, metody otrzymywania (synteza chemiczna, wymiana izotopowa (metoda Wiltzbacha), synteza gorąca, wkorzystująca rozpad beta, biosyteza). 12. Zastosowanie izotopów promieniotwórczych do badania budowy związków chemicznych i mechanizmów reakcji chemicznych (równocenność wiązań chemicznych, tautomeria, reakcje przegrupowania, izomeryzacja, reakcje homo- i heterolityczne, reakcje redox, kataliza) . 13. Zastosowanie izotopów promieniotwórczych w chemii analitycznej, ze szczególnym uwzględnieniem miareczkowania radiometrycznego oraz analizy aktywacyjnej. 14. Paliwo jądrowe – cykl paliwowy, otrzymywanie toru i uranu z rud, wzbogacanie izotopowe uranu, wytwarzanie zestawów paliwowych, przerób wypalonego paliwa (metody strąceniowe i ekstrakcyjne), unieszkodliwianie i przechowywanie odpadów promieniotwórczych. Ćwiczenia laboratoryjne dotyczą następujących zagadnień: 1. Podstawowe pojęcia z zakresu budowy jądra atomowego (m.in. nukleon, nuklid, izotopy, izobary, liczba atomowa, liczba masowa). 2. Podstawowe pojęcia dotyczące rozpadu promieniotwórczego (m.in. czas połowicznego zaniku, stała rozpadu promieniotwórczego, aktywność źródła, prawo rozpadu i nagromadzania, prawo przesunięć Soddy’ego Fajansa). 3. Liczniki promieniowania jonizującego. a) podział liczników gazowych oparty na zależności liczby jonów zbieranych na elektrodach licznika od napięcia przyłożonego do elektrod. b) schemat budowy i zasada działania licznika G-M i licznika scyntylacyjnego, c) charakterystyki napięciowo zliczeniowe licznika G-M i licznika scyntylacyjnego, d) wyznaczanie napięcia pracy wyżej wymienionych liczników, e) wielkości, które można mierzyć poszczególnymi typami liczników. 4. Promieniowanie alfa, beta, gamma. a) przemiany alfa, beta, gamma (wychwyt K, konwersja wewnętrzna), b) rodzaje osłon stosowanych do ochrony przed promieniowaniem alfa, beta, gamma c) widma promieniowania alfa, beta, gamma d) absorpcja promieniowania alfa, beta, gamma (wykresy absorpcji z zaznaczeniem zasięgu maksymalnego i średniego), e) oddziaływanie promieniowania alfa, beta, gamma z materią. 5. Poprawki uwzględniane przy obliczaniu aktywności bezwzględnej źródła (m.in. poprawka na kąt bryłowy, tło detektora, czas martwy, rozproszenie wsteczne, samoabsorpcję, absorpcję w powietrzu i okienku detektora). 6. Układ koincydencyjny i antykoincydencyjny – schemat budowy i zasada działania. 7. Analizatory amplitudy - schemat budowy i zasada działania. a) dyskryminator progowy, b) analizator jednokanałowy, c) analizator wielokanałowy. 8. Dozymetria (m.in. dawka ekspozycyjna, dawka pochłonięta, dawka równoważna, dawka skuteczna, obowiązujące jednostki). |
Literatura: |
1. W. Szymański, Chemia jądrowa, zarys problematyki przemian jądrowych, Wydawnictwo Naukowe PWN, Warszawa, 1996. 2. W. Szymański, Chemia jądrowa, Wydawnictwo Naukowe PWN, Warszawa, 1991. 3. W. Muchin, Doświadczalna fizyka jądrowa, t.1 - Fizyka jądra atomowego, Wydawnictwa Naukowo-Techniczne, Warszawa, 1978. 4. A.N. Niesmiejanow, Radiochemia, PWN, Warszawa, 1975. 5. J. Sobkowski, Chemia jądrowa, PWN, Warszawa, 1981. 6. Praca zbiorowa pod redakcją A. Z. Hrynkiewicza – Człowiek i promieniowanie jonizujące, Wydawnictwo Naukowe PWN, Warszawa 2001. 7. Araminowicz J., Małuszyńska K., Przytuła M., – Laboratorium z fizyki jądrowej, PWNa, Warszawa 1978. 8. Dobrzyński L., Droste E., Trojanowski W., Wołkiewicz R., – Spotkanie z promieniotwórczością, Instytut Problemów Jądrowych im. A. Sołtana, Świerk 2005 9. Dziunikowski B. – O fizyce i energii jądrowej, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2001. 10. England J.B. – Metody doświadczalne fizyki jądrowej, PW 11. Praca zbiorowa – Radiochemia w ćwiczeniach i zadaniach, Wydawnictwa Uniwersytetu Warszawskiego, 1977. 12. Gorączko W. – Radiochemia i ochrona radiologiczna, Wydawnictwo Politechniki Poznańskiej, Poznań 2003. 13. Gostkowska B. – Wielkości, jednostki i obliczenia stosowane w ochronie radiologicznej, CLOR, Warszawa 1991. 14. Gostkowska B. – Fizyczne podstawy ochrony radiologicznej, CLOR, Warszawa 1992. 15. Gostkowska B., Zajdel J. – Wybrane zagadnienia z fizyki jądrowej, Resortowy Ośrodek Informacji Naukowej, Technicznej i Ekonomicznej Energetyki i Energii Atomowej, Warszawa 1977. 16. Hilczer T. – Ćwiczenia z fizyki jądrowej, Wydawnictwo Naukowe UAM, Poznań 1975. 17. Kroh J. – Wybrane zagadnienia z chemii radiacyjnej, PWN, Warszawa 1986. 18. Lisiecki W., Scharf W., – Spektrometry rozkładów amplitudowych, PWN, Warszawa 1973. 19. Massalski J. – Detekcja promieniowania jądrowego, PWN, Warszawa 1959 20. Niesmiejanow A. – Ćwiczenia z radiochemii, PWN, 1959 21. Piątkowski A., Scharf W. – Elektroniczne mierniki promieniowania jonizującego, Wydawnictwo Ministerstwa Obrony Narodowej, 1969. 22. Sobkowski J. – Chemia jądrowa, PWN, Warszawa, 1981. 23. Sobkowski J. – Zastosowanie nuklidów promieniotwórczych w chemii, PWN, Warszawa 1989. 24. Szymański W. – Chemia jądrowa, Wydawnictwo Naukowe PWN, Warszawa 1996. 25. Praca zbiorowa - Ćwiczenia laboratoryjne z chemii jądrowej i radiometrii, Wydawnictwo UMCS, Lublin 2010. 26. Z. Celiński - Energetyka jądrowa, PWN, Warszawa 1991. 27. A. Komosa - Fizykochemiczne problemy oznaczania i zachowanie się izotopów plutonu w środowisku z uwzględnieniem beta-promieniotwórczego 241Pu”, Wydawnictwo UMCS, Lublin 2003. |
Efekty uczenia się: |
WIEDZA W1. Zna podstawowe założenia i osiągnięcia wiodących dziedzin fizyki współczesnej. Zna podstawowe modele teoretyczne oraz metody doświadczalne fizyki atomowej, jądrowej i fizyki ciała stałego. K_W04 W2. Posiada wiedzę o właściwościach chemicznych pierwiastków, wybranych cząsteczek i związków oraz reakcjach chemicznych. K_W8 W3. Zna w stopniu średniozaawansowanym założenia teoretyczne dziedzin związanych ze studiowaną specjalnością. K_W01 W4. Zna zasady budowy urządzeń specjalistycznych. K_W05 UMIEJĘTNOŚCI U1. Potrafi określić zasady pracy urządzeń związanych ze studiowaną specjalnością. K_U03 U2. Potrafi wykonać proste eksperymenty w zakresie wybranej specjalności. K_U03 U3. Potrafi na podstawie opisu zjawiska fizycznego i instrukcji przygotować i wykonać doświadczenie fizyczne. Posiada umiejętność oszacowania błędu pomiarowego oraz opisania wykonanego eksperymentu). K_U02, K_U03 U4. Potrafi przetestować prawidłowość działania i warunki pracy aparatury pomiarowej. K_Inz_W03, K_Inz_W04 KOMPETENCJE SPOŁECZNE K1. Rozumie potrzebę rozwoju osobistego. K_U12 K2. Potrafi zaplanować kolejność czynności w złożonych ćwiczeniach laboratoryjnych lub działalności praktycznej. K_Inz_W02, K_Inz_W03 |
Zajęcia w cyklu "Semestr letni 2024/2025" (w trakcie)
Okres: | 2025-02-25 - 2025-09-30 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Laboratorium, 30 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | Małgorzata Wiśniewska | |
Prowadzący grup: | Ewa Skwarek, Małgorzata Wiśniewska | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Laboratorium - Zaliczenie na ocenę Wykład - Egzamin |
Właścicielem praw autorskich jest Uniwersytet Marii Curie-Skłodowskiej w Lublinie.